Оптические явления
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
Все нагретые тела излучают электромагнитные волны. Чтобы экспериментально исследовать зависимость интенсивности излучения от длины волны, необходимо:
1) разложить излучение в спектр;
2) измерить распределение энергии в спектре.
Для получения и исследования спектров служат спектральные аппараты -спектрографы. Схема призменного спектрографа представлена на рисунке. Исследуемое излучение поступает сначала в трубу, на одном конце которой имеется ширма с узкой щелью, а на другом - собирающая линза L1. Щель находится в фокусе линзы. Поэтому расходящийся световой пучок, попадающий на линзу из щели, выходит из нее параллельным пучком и падает на призму Р.
Так как разным частотам соответствуют различные показатели преломления, то из призмы выходят параллельные пучки разного цвета, не совпадающие по направлению. Они падают на линзу L2. На фокусном расстоянии от этой линзы располагается экран, матовое стекло или фотопластинка. Линза L2 фокусирует параллельные пучки лучей на экране, и вместо одного изображения щели получается целый ряд изображений. Каждой частоте (точнее, узкому спектральному интервалу) соответствует свое изображение в виде цветной полоски. Все эти изображения вместе и образуют спектр. Энергия излучения вызывает нагревание тела, поэтому достаточно измерить температуру тела и по ней судить о количестве поглощенной в единицу времени энергии. В качестве чувствительного элемента можно взять тонкую металлическую пластину, покрытую тонким слоем сажи, и по нагреванию пластины судить об энергии излучения в данной части спектра.
Выберите два верных утверждения, которые соответствуют содержанию текста. Запишите в ответ их номера.
1. Разложение света в спектр в аппарате, изображенном на рисунке, основано на явлении дисперсии света.
2. Разложение света в спектр в аппарате, изображенном на рисунке, основано на явлении отражения света.
3. В устройстве призменного спектрографа линза L2 (см. рис.) служит для фокусировки лучей определенной частоты в узкую полоску на экране.
4. В устройстве призменного спектрографа линза L2 (см. рис.) служит для определения интенсивности излучения в различных частях спектра.
5. В устройстве призменного спектрографа линза L2 (см. рис.) служит для разложения света в спектр.
Окраска различных предметов, освещенных одним и тем же источником света (например, Солнцем), бывает весьма разнообразна. Это объясняется тем, что свет, падающий на предмет, частично отражается (рассеивается), частично пропускается и частично поглощается им. Доля светового потока, участвующего в каждом из этих процессов, определяется с помощью соответствующих коэффициентов: отражения, пропускания, поглощения.
Эти коэффициенты могут зависеть от длины световой волны, поэтому при освещении тел наблюдаются различные световые эффекты. Тела, у которых коэффициент поглощения близок к единице, будут черными непрозрачными телами, а те тела, у которых коэффициент отражения близок к единице, будут белыми непрозрачными телами.
Кроме обозначения цвета — красный, желтый, синий и т. д. — мы нередко различаем цвет по насыщенности, то есть по чистоте оттенка, отсутствию белесоватости. Примером глубоких или насыщенных цветов являются спектральные цвета. В них представлена узкая область длин волн без примеси других цветов. Цвета же тканей и красок, покрывающих предметы, обычно бывают менее насыщенными и в большей или меньшей степени белесоватыми.
Причина в том, что коэффициент отражения большинства красящих веществ не равен нулю ни для одной длины волны. Таким образом, при освещении окрашенной в красный цвет ткани белым светом мы наблюдаем в рассеянном свете преимущественно одну область цвета (красную), но к ней примешивается заметное количество и других длин волн, дающих в совокупности белый свет. Но если такой рассеянный тканью свет с преобладанием одного цвета (например, красного) направить не прямо в глаз, а заставить вторично отразиться от той же ткани, то доля преобладающего цвета усилится по сравнению с остальными, и белесоватость уменьшится. Многократное повторение такого процесса может привести к получению достаточно насыщенного цвета.
Поверхностный слой любой краски всегда рассеивает белый свет в количестве нескольких процентов. Это обстоятельство портит насыщенность цветов картин. Поэтому картины, написанные масляными красками, обычно покрывают слоем лака. Заливая все неровности краски, лак создает гладкую зеркальную поверхность картины. Белый свет от этой поверхности не рассеивается во все стороны, а отражается в определенном направлении. Конечно, если смотреть на картину из неудачно выбранного положения, то такой свет будет очень мешать (отсвечивать). Но если рассматривать картину с других положений, то благодаря лаковому покрытию белый свет от поверхности в этих направлениях не распространяется, и цвета картины выигрывают в насыщенности.
Выберите два верных утверждения, которые соответствуют содержанию текста. Запишите в ответ их номера.
1. При покрытии лаком картин, написанных масляными красками уменьшается коэффициент преломления света.
2. При покрытии лаком картин, написанных масляными красками увеличивается коэффициент поглощения света.
3. При покрытии лаком картин, написанных масляными красками отражение света становится направленным.
4. Частота волны характеризует свет разного цвета.
5. Плотность среды, на поверхность которой падает свет характеризует свет разного цвета.
Температура у поверхности Земли зависит от отражательной способности планеты — альбедо. Альбедо поверхности — это отношение потока энергии отраженных солнечных лучей к потоку энергии падающих на поверхность солнечных лучей, выраженное в процентах или долях единицы. Альбедо Земли в видимой части спектра — около 40%. В отсутствие облаков оно было бы около 15%.
Альбедо зависит от многих факторов: наличия и состояния облачности, изменения ледников, времени года и соответственно от осадков. В 90-х годах XX века стала очевидна значительная роль аэрозолей — мельчайших твердых и жидких частиц в атмосфере. При сжигании топлива в воздух попадают газообразные оксиды серы и азота; соединяясь в атмосфере с капельками воды, они образуют серную, азотную кислоты и аммиак, которые превращаются потом в сульфатный и нитратный аэрозоли. Аэрозоли не только отражают солнечный свет, не пропуская его к поверхности Земли. Аэрозольные частицы служат ядрами конденсации атмосферной влаги при образовании облаков и тем самым способствуют увеличению облачности. А это, в свою очередь, уменьшает приток солнечного тепла к земной поверхности.
Прозрачность для солнечных лучей в нижних слоях земной атмосферы зависит также от пожаров. Из-за пожаров в атмосферу поднимается пыль и сажа, которые плотным экраном закрывают Землю и увеличивают альбедо поверхности.
Выберите два верных утверждения, которые соответствуют содержанию текста. Запишите в ответ их номера.
1. Аэрозоли отражают солнечный свет и тем самым способствуют уменьшению альбедо Земли.
2. Извержения вулканов способствуют увеличению альбедо Земли.
3. Под альбедо поверхности понимают общий поток падающих на поверхность Земли солнечных лучей.
4. Под альбедо поверхности понимают отношение потока энергии отраженного излучения к потоку поглощенного излучения.
5. Под альбедо поверхности понимают отношение потока энергии отраженного излучения к потоку падающего излучения.
На скорость света не влияет ни скорость источника света, ни скорость наблюдателя. Постоянство скорости света в вакууме имеет огромное значение для физики и астрономии. Однако частота и длина световой волны меняются с изменением скорости источника или наблюдателя. Этот факт известен как эффект Доплера.
Предположим, что источник, расположенный в точке О, испускает свет с длиной волны λ0. Наблюдатели в точках A и B, для которых источник света находится в покое, зафиксируют излучение с длиной волны λ0 (рис. 1). Если источник света начинает двигаться со скоростью v, то длина волны меняется. Для наблюдателя A, к которому источник света приближается, длина световой волны уменьшается. Для наблюдателя B, от которого источник света удаляется, длина световой волны увеличивается (рис. 2). Так как в видимой части электромагнитного излучения наименьшим длинам волн соответствует фиолетовый свет, а наибольшим — красный, то говорят, что для приближающегося источника света наблюдается смещение длины волны в фиолетовую сторону спектра, а для удаляющегося источника света — в красную сторону спектра.
Изменение длины световой волны зависит от скорости источника относительно наблюдателя (по лучу зрения) и определяется формулой Доплера:
Эффект Доплера нашел широкое применение, в частности в астрономии, для определения скоростей источников излучения.
Выберите два верных утверждения, которые соответствуют содержанию текста. Запишите в ответ их номера.
1. Наблюдатель, к которому источник света приближается, зафиксирует увеличение скорости света и увеличение длины световой волны.
2. Наблюдатель, к которому источник света приближается, зафиксирует уменьшение длины световой волны.
3. Наблюдатель, к которому источник света приближается, зафиксирует увеличение длины световой волны.
4. Примерно 100 лет назад американский астроном Весто Слайфер обнаружил, что длины волн в спектрах излучения большинства галактик смещены в красную сторону. Этот факт может быть связан с тем, что галактики разбегаются (Вселенная расширяется).
5. Примерно 100 лет назад американский астроном Весто Слайфер обнаружил, что длины волн в спектрах излучения большинства галактик смещены в красную сторону. Этот факт может быть связан с тем, что галактики сближаются (Вселенная сжимается).
Мираж является оптическим явлением в атмосфере, которое делает видимыми предметы, которые в действительности находятся вдали от места наблюдения, отображает их в искаженном виде или создает мнимое изображение.
Миражи бывают нескольких видов: нижние, верхние, боковые миражи и другие. Образование миражей связано с аномальным изменением плотности в нижних слоях атмосферы (что, в свою очередь, связано с быстрыми изменениями температуры).
Нижние миражи возникают преимущественно в тех случаях, когда слои воздуха у поверхности Земли (например, в пустыне) очень сильно разогреты и их плотность становится аномально низкой. Лучи света, которые исходят от предметов, начинают преломляться и сильно искривляться. Они описывают дугу у поверхности и подходят к глазу снизу. В таком случае можно увидеть предметы как будто зеркально отраженными в воде, а на самом деле это перевернутые изображения отдаленных объектов (рис. 1). А мнимое изображение неба создает при этом иллюзию воды на поверхности.
Верхние миражи возникают над сильно охлажденной поверхностью, когда над слоем холодного воздуха у поверхности образуется более теплый верхний слой (рис. 2). Верхние миражи являются наиболее распространенными в полярных регионах, особенно на больших ровных льдинах со стабильной низкой температурой. Изображения предметов, наблюдаемые прямо в воздухе, могут быть и прямыми, и перевернутыми.
По мере приближения к поверхности Земли плотность атмосферы растет (рис. 3).
Выберите два верных утверждения, которые соответствуют содержанию текста. Запишите в ответ их номера.
1) Миражи образуются только вблизи водоемов.
2) В Северном Ледовитом океане наблюдать верхние миражи более вероятно по сравнению с нижними.
3) Наблюдать миражи можно при резких изменениях температуры воздуха.
4) Верхние миражи всегда дают перевернутое изображение.
5) Нижние миражи образуются над сильно охлажденной поверхностью.
Пройти тестирование по этим заданиям



