В 1946 году советские ученые при проведении исследований в Японском море обнаружили очень интересное явление. Звуковые волны от взрывов (подрывались противолодочные мины на глубине 100 метров) распространялись без заметного ослабления на очень большие расстояния — на многие сотни километров. Было выяснено, что это происходит из-за своеобразной зависимости скорости звука в океане от его глубины.
Скорость звука в морской воде, вообще говоря, меняется с изменением температуры, солености и гидростатического давления. Во время работ в Японском море соленость изменялась с глубиной незначительно, и ее влияние не сказывалось. При погружении с поверхности до глубины примерно 300 метров скорость звука уменьшалась из-за падения температуры. При дальнейшем погружении температура изменялась мало (всего лишь на 0,3-0,5 °C). Однако по мере увеличения глубины (максимальная глубина в Японском море около 3700 м) существенно росло гидростатическое давление. Это приводило к возрастанию скорости звука. В результате формировалась сложная зависимость скорости звука от глубины (см. рис. 1). Как видно из графика, минимум скорости звука соответствует глубине 300 м. Выше и ниже этого уровня скорость звука больше. К чему приводит такой профиль скорости звука?
Ответ на данный вопрос можно найти с помощью оптической аналогии. Из закона преломления света следует, что в среде с изменяющимся показателем преломления (т. е. при изменении скорости света в среде) световой луч искривляется. Точно по такому же закону происходит искривление «звуковых лучей» при распространении звука в неоднородной среде, в которой скорость звука меняется. Частный случай такой среды и представляет собой вода в море.
На рис. 2 изображен ход нескольких «звуковых лучей», выходящих в направлении морского дна из излучателя (И), помещенного на глубине 100 м. Лучи попадают в приемник (П), который находится на глубине 300 м на расстоянии 184 км от излучателя. Вследствие непрерывного «преломления» в воде звуковые лучи искривляются — они снова и снова возвращаются к горизонтальному уровню, который соответствует минимуму скорости звука. При этом целое семейство звуковых лучей (как показано на рис. 2) не достигает дна, где звуковые сигналы могли бы поглотиться, и не выходит на волнующуюся поверхность воды, на которой они могли бы рассеяться. В результате звук приходит в приемник, все время распространяясь в толще воды, или, как говорят, по «подводному звуковому каналу» (сокращенно — ПЗК) почти без затухания. Это позволяет регистрировать звуковые сигналы за многие тысячи километров от источника звука.
Наличием ПЗК и объясняется явление «сверхдальнего» распространения звука, наблюдавшееся в 1946 году в Японском море. Оказывается, ПЗК может возникать в любом море или океане при условии их достаточной глубины.
Скорость звука в морской воде зависит
1) только от температуры
2) только от солености
3) только от гидростатического давления
4) от температуры, солености и от гидростатического давления
Скорость звука в морской воде зависит от температуры, солености и гидростатического давления жидкости.
Ответ: 4.



